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ABSTRACT

A new learning algorilhnt  termed Cascade Error Projection (CEP) which provides eflcien! learning in
hardware is presented. This algorithm is adapted a constructive architecture j?om cascade correlation and
the dynamical stepsize  of AID conversion from the cascade back propagation algoti(hm.  The CEP technique is
fasler  to execule,  because part of the weights are deterministically  obtained, and the learning of the remaining
weights from the inputs to the hidden unit is performed as a single-layer percep(ron  learning with previously
determined weights kept frozen. In addition, one can start out with zero wright  ~’alues  (rather than random
finite weight values) when the learning of each layer is commenced. Furlhcr,  unlike cascade correlation
algorithm (where a pool of candidate hidden units is added), only a single hidden unit is added at a time.
Therefore, the simplicity in hardware implementation is also achieved. In simulation, a fixed 100 epoch
iterations is used for each single-layer perception (each single hidden unit) learning. The highlight of this
algorithm is thal with round-off method, Sfo 8-bit parity problems can be soived with a limited synaptic
resolution of only 3- to 4-bit, and the same problem with truncation technique would be solved with 5-bit or
nwre synaptic resolution.

J. Introduction In this paper, a ncw efficient cascade error
projection (CEP) learning algorithm is presented.

There are many ill-defined problems in
paltcrn rczognition,  classification, vision, and
speech recognition which need to be solved in real
time [1-4]. These problems are too complex 10 be
solved by a linear technique; the most  suitable
approach would be a non-linear technique, such as
a neural nci work. Error Backpropagation  (EBP)[5]
learning algorithm is a popular supervised learning
technique. Onc of the most  at[raclivc  features of
the ncttral  network is a massively parallel
processing that offers tremendous speed only when
implcmcntcd in hardware. From the hardware
point of view, EBP requires at least  12-bit weight
resolution to learn a non-linear simple problem[6]
showing that this learning algorithm is very
expensive for hard ware implcmcntalion.  However,
there arc other learning algorithms that arc more
practical than others [7]. There have been a fcw
atlcmpls  to adapt such algorithms to hardware.
Weight pcrturbation[8], cascade
corrclat ion(CC)[9], and caseadc backpropagat  ion
(CBP)[1O] approaches has been investigated and
reported in literature,
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Ilgure  1. I he ard,iteclure of easeade e r r o r
projedion includes inpuls, hidden units, and output
units, Ihe shaded citvles or squares indicate the
learned or calculated weight Q which are computed
a n d  fmmn. A circle  indiwtes that  kaming is
~Jied to obtain the wcigbl  @ using pwcqrtron
learning, and a square indicates that tbe weight M is
&trm~inistieaIly calculated.
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fast, reliable, and hardware impkmcntabk learning
method using a one-layer pcrccptron approach and
a dckxminis(ic  calculation for lhc other layer.
This procedure offers a fast, reliable, and hardware
implcmcntablc  learning algorilhm [11].  To
validate the ncw learning algorithm of CEP,
simulations of problems from 5- to 8-bit parity
were investigated with weight quantization  based
on a floating point machine (32-bit for ftoat and
64-bit  for double precision) as WCII as limited
w e i g h t  quantizations  bascxl o n hard ware
implcmcntat  ion (3- to 6-bit weight  resolution)
using two A/D conversion techniques (round-off
and truncation).

In general, the nc(work architecture is
shown in Figure 1. Shaded squares and circles
indicate frozen weights; a sqrrarc  indicates
calculated weights, and a circle indicates learocd
weights.

2. Cascade Error Projection Learning
Algorithm

The motivation to usc the CEP tcchniquc is
supported by three reasons:
a) It has faster learning by dividing the network

in(o two sub-nciworks:
i) Stochastic learning network.

ii) Deterministic calculation network.
b) M is cfficicnt  even with limited weight

rcsohrtion  hcncc eas ie r  to  imp]cmcnt  i n
hard ware.

c) The analysis guarantees its learning capability
both in continuous and in discrctc weight
space [11].

2.1 Mathematical approach:

The energy function is defined as:

The weight updating bctwccrr  the inputs (including
previously added hidden units) and lhc newly
added hidden unit is calculated as follows:

(a)

and the weight updating bctwccn  hiddco unit n +1
and the output unit o is

The used notations arc defined as follows:
m is the number of outputs, P is the number of
training patterns.

Error c: = t: – o~(n); where o: (n) is the output
clcmcnt  o of actual output o(n) for training pattern

p and 1: is the targcl clement o for training
pattern p. n indicates number of previously added
hidden units.

y:(n) = ~~ denotes thc output transfer function
derivative with respect 10 its input.
f~(n + 1) denotes the t!ansfcr function of hidden
unit n+].

3. Simulation

3.1 Cascade Error Projection Learning
Algorithm Procedure

1. Starl  with the network which has
input and output neurons. With the
given input and output pa[terns  and
hyperbolic trarrsfcr function, one can
determine the SC1 of weights between
input and output by using pseudo-
inverse or perccptron  learning. The
uvight set WiO is thus obtained and

frozen.
2. Add a new hidden unit with a zero

weight  set for each unit. In each loop
(contains an epoch) an input-output
pattern  is picked up randomly in the
e~joch (no pattern repeated until every
pattern in the epoch is picked). Use the
pcrceptron  Ieurning t e c h n i q u e  o f
equation (a) 10 train Wi~ (n + 1) for 100
epoch iterations.

3. stop the pcrceptron training.
Calculate the weights WhO(n + 1)
between lhe current hidden unit and the
output units fiorn  equation (b).

4. Cross-validate the network. If the
criteria is satisfted,  then stop training,
and tes[ the network. Otherwise, go to
siep 2 above until the nunrber of hidden
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units is rrwre than 20; then give up and
quit!

3.2 Problems

From 5- to 8-bit  parity problems arc solved in
this paper. The input and output highs arc 0.8,
and the lows arc -0.8. This simulation is

conducted (1) with no limited we igh t
quantization  (32-bit for floating point or 64-bit
for double precision); and, (2) the limited weight
quantization  from 3106 bits using round-off and
truncation techniques.

3.3 Parametem

The learning rate II is decreased linearly at each
cpoeh  as follows:

~ .W ‘~old--o] *~0

II o = 0.4 for 7- to 8-bit parity with no
limited weight quant  ixation,  and q o = 1.0 for
others.

3.4 Conversion techniques

The updating weight Aw is convcrled  into the
available weight quantization  which is Aw*.
The conversion can be summarized m follows:

Sfepsize(n) = pfl(n - 1) with ~ constant

*Round-off techniauc:

Awjh
skpsize(n)  * int( + 0.5)

stepsize(n)
Wj~(Ii) A~jj~ (n)

ly ( +- int( -+
s[epsize(n) slepsize(n)

< 2B and Aw~j~ (n)> O

AM,;~ (u)= . ,yfcpsjze(n)  * int(sj~j~’l)  – 0.5)

0.5))

Wj~ (n) Awjh (n)
ry’( + int( --- 0.5))

slepsize(n) slepsize(n)

< –2B and AUIjh (n)< O

0 Otherwise

* Truncation technique

, Awj~
slepsize(n)  * inl(– )

slepsize(n)

~ ~ ‘jh (fi) Aw h(n)
-——-- -t int( ))
slepsize(n) s(epsize(n)

< 2B ond Awjh (n)> O

Awj~ (n)
Aw~~(n):: ~ stepsize(n)  * int(- )sfepsize(n)

Wjh  (?1)

if (-——.--–
S:s$:?

-1 int( ‘.
slepsize(n)

< –2B and iiWjh(n) < 0

10 Otherwise

3.5 Simulation results

Figure 2 refers to simulation results with roundaff
tcchniquc. Even with 3-bit weight resolution the
network is able to learn 5- to 7-bit parity problems
with no error within the, 20 hidden units limit. For
weight quantization  of 4-bit or more, the network
reliably demonstrates the capability of learning
from 5- to 8-bit parit y ploblcms.
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Figure 2: lhe chart shows CEP learning capability
for 5- to S-bit parity pmbkrns  using mund+ff
tedmique. x axis wresents  limited weight
quanti?ation (3-6 and Whit) and y axis shows the
resulting nunkr of hidden units (limited to 20).
Ikh hidden unit has 100 epoeh  iterations. As
shown, the lager number of hid&n units compensate
for the lower  weigld resolution.
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,Wgure 3: Ihe eharl shows CFY learning capability
for 5- to 8-hit panty pmbkrns using truncation
technique. x axis represents limited  weight
quantimtion  (3-6 and 64-bit) and y axis shows the
~suliing number of hidden units (limited to 20).
Each bidden unit has 100 epoch iterations. Aq
shown, the lager number of hidden units  cxnrqwnsate.
for the lower weight resolution.

Figure 3 shows similar results for the truncation
tcchniquc.  Here 3- and 4-bit weight quantizations
do not have the capability to learn 5-bit or higher
parity problems. However, with higher bit
resolution the learning with truncation technique
shows the learning capability; even though, it is
not as consistent as that with the round-off
tcchniquc.

4. Conclusions

in this paper, wc have shown that CEP is
an cfficicnt  algorithm for hardware-based learning.
Its advantages can bc summarized as follows:
. A fast, reliable learning tcchniquc
● Easy to implement in hardware
● Tolerant of limited synaptic weight resolution
● The round-off tcchniquc is belter compared
with truncation as shown by our analysis

5. Acknowledgment-s

The research dcseribcd herein was performed by
the Center for Space Microelectronics Technology,
Jet Propulsion Laboratory, California Institute of
Technology and Dcparmcnt  of Electrical and
Computer Engineering, University of California
Irvine, and was jointly sponsored by the Ballistic
Missile Dcfcnsc Orgrmization/Innovative Scicncc
and Technology Office (BMDO/lST),  the Office of
Naval Research (ONR), the Advanced Research

projects Agency (ARPA), and the National
Aeronautics and Space Administration (NASA).
The author would like to thank Drs A. Stubbcrud,
T. Daud, and A. Thakoor for useful discussions.

6. References

[1] B.P,. Boser, E, Sackingcr,  J. Bromley,  Y.
LeCun, and L.D. Jackcl,  “An Analog Neural
Network Processor with Programmable Topology,”
IEEE Journal of Solid State Circuils,  vol. 26, NO.
12, DCC. 1991.
[2] T.A. Duong, T. Brown, M. Tran, H.
Langcnhachcr, and T, Daud, “Analog VLSI neural
network building block chips for hardware-in-the-
loop learning,” Proc. lILEEIINNS  Int’1 Join Conf.
on Neural  Networks, }{cijing, China, Nov. 3-6,
1992.
[3] T.A. Duong ct. al, “Low Power Analog
Ncurosynapsc  Chips for  a 3 - D  “Sugarcubc”
Ncuroprocrxwor,”  Proc. of IEEE lntl’  Conf on
Neural Networks(lCNN/WCC1),  Vol 111, pp. 1907-
1911, June 28-July 2, 1994, Orlando, Florida.
[4] T.A. Duong ct. al., “Analog 3-D
Ncuroprocessor  for Fast Frame Focal Plane Image
Processing:’  Journal of Simulation , Vol 65, NO 1,
pp. 11-25, July, 1995
[5] D.E. Rumclhart, and J.],. McClelland, Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1: Foundation.
MIT Press, Cambri@,c,  MA 1986.
[6] P. W. Hollis,  J.S. }Iarpcr,  and J.J. Paulos, “The
effects of Pfccision Constraints in a
Backpropagation lcan~ing Network,” N e u r a l
Computation, vol. 2, pp. 363-373, 1990.
[7] R. Tawcl, “Lcarnirig in analog neural network
hard wal c,” Computers Elect.  Engng,  Vol. 19, No.
6, pp 453-467, 1993.
[8] M. Jabri and B. Flower “Weight Perturbation:
An Optimal Architccturc and learning Technique
for Analog VLSI Frccdforward  and recurrent
Multilaycr  Networks,” IEEE Trans. on Neural
NetworL$, Vol 3, NO. 1, pp 154-157, Jan, 1992.
[9] M. Hochfeld and S. Fahlman,  “Learning with
limited numerical precision using the cascadc-
correlation algorithm ,“ IEEE Trans. Neural
Networks, VO1.3,  No.4,pp602-611, July 1992.
[10] T.A. Duong, S.P. Ebcrhardt,  T. Daud, and A.
Thalma  , “Learning in neural networks: VLSI
imDlcmcntation  stratcgics~’  In: FuizY logic and
Neural Network Ilandbook, Ed: C.H.
McGraw-Hill, 1995 (To be published).
[11] T.A, Duong, A. Stubbcrud,  and T.
“Cascade Error Projection learning
submi(tcd  to Neural Cornpu(ation,  1995

Chen,

Daud ,
theory”


